
Inside The BDE:
Building A Data Dictionary
by Brandon Smith

The Borland Database Engine
(BDE) is a mysterious beast,

even after you shell out the extra
time and money to obtain the
manual. Information hiding is one
of those concepts whose time has
come, and the Delphi approach to
database programming, just like
Wirth’s original definition of the
Pascal language, is forcing good
programming habits on us.

The purpose of this article and
the sample programs is to show
you a little of what can be achieved
using the BDE directly with Delphi
to create database applications.
The example I’ve chosen is a data
dictionary application, which I
hope you will find useful as well as
informative. Note that whilst much
of what I discuss may apply to
Delphi 2, I’ve written it from the
perspective of a Delphi 1 user.

Records And Fields
While one can, with some effort,
justify a need to work with a record
number in Delphi, I’ve found that it
really isn’t that much of a loss.
Speaking as an ex-dBase program-
mer, I like to know which record
number I’m seeing, but my custom-
ers generally don’t care. Their
attention is on the data, not its
physical location in the table.

By focusing on the tools that
Delphi does provide, my attention
is also on the data – the table, the
query and (most importantly) the
field definitions. These funny ani-
mals, TIntegerField, TBlobField
and so forth, are the key to
database programming in Delphi.

But if TField is the key, why do
you have to go through hoops to
get at the field definitions? Why
aren’t they simply built into visual
components like TDBedit? Perhaps
the answer partly lies in another
question. How would you like a
huge component palette that listed
TDBIntegerEdit, TDBSmallIntEdit,

TDBWordEdit and so on? A separate
icon for each kind of visual repre-
sentation for each kind of field?
This is a valid approach, but Delphi
is already a monster package! Even
Borland cautions that data-aware
components use considerably
more resources than the other
kinds.

Another part of the reason why
the TFields are not present on the
Component Palette is that they
serve as the buffer between an
application or form and the BDE.
On the BDE side, the TField is
initialized when you open a table or
query with an “accurate” definition
of what the physical charac-
teristics of the data is. On the appli-
cation side, the TField provides the
programmer with validation prop-
erties such as minimum and
maximum values.

Why the scare quotes around
“accurate”? Because the BDE has
its own notions about what the
data is. For example, suppose you
had an old dBase file lying around
with a field called SIZE and that
when you look at it with the dBase
LIST STRUCTURE command you see
that this field is a number, length
10, decimals 0. Now move over to
Delphi, drop a table on a form, link
the table to that old dBase file,
double click on the table, add all
the fields, then go to the Object
Inspector and you find Delphi
thinks SIZE is a TfloatField!

At first glance, this is not good at
all. However, what did length 10
mean in dBase? It meant that the
valid range was 0..999999999. In the
old dBase, if you had actually
wanted the valid range to be
0..1111111111, then you would
have to add in additional code to
validate user input. In Delphi, you
simply fill in the minimum and
maximum properties of this
TfloatField. Of course, you’ll have
to go through some effort to make

the error message presented to the
user say something different from
the Delphi default. However, I’ve
found most of Delphi’s default er-
ror messages perfectly clear.

Finding Field Definitions
What’s not clear, though, is how to
easily get at the various definitions
stored in TFields. You can’t get to
them with a simple click on a visual
component. If, part way through
development, you have to change
some TField properties, you have
to go looking for them. Also,
although Delphi will let you just
define some of the TFields, the
manuals caution against it. Either
instantiate all the TFields ‘for a par-
ticular table or let Delphi create
them at runtime and do your own
validation in code. You can also
create TField definitions on the fly,
but I’ve found this doesn’t seem to
work right unless you create them
all. However, what you can do, after
a table is opened, is set TField
properties on the fly. For example:

MyTable.FindField(
 ’LASTNAME’).required := true;

This will set the required property
to true and generate a Delphi warn-
ing if a user tries to post a record
in which this field is blank. Since
FindField returns a TField and
required is a property of TField, no
problem. However, when you get
to MinValue and MaxValue, proper-
ties of each of the numeric TFields,
you will have to typecast to the
appropriate kind of TField:

TFloatField(MyTable.FindField(
 ’SIZE’)).MinValue := 4;

This statement will work, but is
also very dangerous to use. If the
BDE decided SIZE was a TInteger
when it opened the table, then
when Delphi gets to this statement,

44 The Delphi Magazine Issue 8

it invalidates the whole table. Even
when it does work, you have to be
sure to set both minimum and
maximum, otherwise your users
will get an error message.

Rather than go into how we
could use is, as and the case struc-
ture to get around this, let’s back
up and take a wider view of the
problem. What are we using these
TFields for? To define the charac-
teristics of the data elements in our
database tables. In other words, a
data dictionary.

Data Dictionaries
Delphi Developer 2 has a data
dictionary which allows you to
specify things like minimum and
maximum values at design time (at
the time of writing Delphi 2 has not
been released so I don’t know
what’s in it yet). Great, but what
about all of us who are still happily
using Delphi 1? I decided to imple-
ment what I’d call a “real” data
dictionary for use with Delphi 1.

Well, what is a “real” data
dictionary? When I hear the term, I
think back to my mainframe days
and the thick stacks of paper that
were usually called “The Data
Element Dictionary.” Each of the
hundreds of pages contained a
single data element definition
where the data element name, its
type, its size and various other

pieces of information were pre-
sented. “What a waste of paper!” I
hear you mumble, especially when
you find out that many of the pages
were more than half blank! After all,
what more can you say about SIZE
other than it is a number limited to
the range 4..20?

Actually, quite a bit, when you
stop to think about it. In particular,
you can describe just exactly what
the number stored in this field rep-
resents in the real world, why you
want it stored in the computer and
what you plan to do with it, what
name you want the user to see,
what hint string you want to
display for that field, how it relates
to other fields, and so on.

“Oh, that’s just documentation.
Boring, really, let someone else do
it. I’ve got code to write. Just hand
me the dictionary and I’ll prop it up
next to my screen and make sure the
validation code works.”

But what if the dictionary comes
to you as a database table, that you
can simply call on to set up the
TFields for you? Now we have a bit
more than boring old documenta-
tion. Now we have documentation
that feeds directly into the busi-
ness of making code. This is what I
think of as a real data dictionary.

The remainder of this article
describes two applications. The
first, DDICT.DPR, is the data

dictionary itself, the second,
CONTACTS.DPR, is a sample appli-
cation which uses a table gener-
ated by the data dictionary to
modify its TFields on the fly. The
unit DBUTILS.PAS is common to
both programs and is set up as a
component, though not used that
way in this example. The DictCtrl
class contains the pieces that build
the dictionary as well as the pieces
that enable modifying TFields. In
order to keep down the BDE
overhead, when I grab the data
dictionary information for the
target application I pull it into a
TStringGrid and work on it from
there.

The DDICT Project
DDICT.DPR, the data dictionary
itself (see Figure 1), generates a
dBase table which contains the
data element definitions. Generat-
ing an empty table is not difficult,
though working with the BDE alias
scheme is a pain – more about that
later. The code fragment in Listing
1 (over the page) illustrates how to
generate a dBase table on the fly
(the full source code is included on
this month’s disk of course).

Once the empty data dictionary
table is created, we could use the
dictionary input form to create
each of the fields. However, I find it
easier to use Delphi 1’s Database
Desktop to do the initial build of my
actual application. Another reason
to use the Database Desktop to do
the initial build is that when I pull
in the basic data element informa-
tion into the data dictionary, I
ensure that my dictionary knows
what kind of data type the BDE has
assigned each field. This way I
avoid trying to figure out whether
a numeric field with a length of 6 is
a TSmallInt, TInteger or TFloat.
Pulling this basic information is
accomplished by the code illus-
trated in Listing 2 (more detail on
the disk again).

Once we have the basic informa-
tion about what the BDE thinks is
in our table, we use the DDDICT
program to add details to the
CONTACT data dictionary. For
example, we’ll add a hint to the
field FIRSTNAME (see Figure 2), we’ll
check off Required for field LASTNAME

➤ Figure 1: The DDICT data dictionary in action

April 1996 The Delphi Magazine 45

(Figure 3), and we’ll set a minimum
and maximum for NumMailTo. Now,
after saving the dictionary
database, all we have to do in the
Contact program is call on DictCtrl

try
 main.sourceDatabase.close;
 main.SourceDatabase.Params.clear;
 main.SourceDatabase.Params.Add(’PATH=’+fPathName);
 main.SourceDatabase.open;
 with main.DictTable do begin
 active := false;
 databasename := main.SourceDatabase.databasename;
 tablename := fTableName;
 tabletype := ttdBase;
 with FieldDefs do begin
 clear;
 Add(’TABLE_NAME’, ftString, 20, false);
 Add(’FIELD_NAME’, ftstring, 10, false);
 Add(’FIELD_TYPE’, ftstring, 1, false);
 Add(’REQUIRED’, ftBoolean, 0, false);
 { ... more fields as needed }
 end;
 createTable;
 Result := true;
 end;
except
 on EdatabaseError do begin
 MessageDlg(’Error attempting to create DD file.’,
 mtInformation, [mbOK], 0);
 Result := false;
 end;
end;

➤ Listing 1

var
 tmpint, thisfield : integer;
 tmpstr : string;
 FromField : tField;
begin
 try
 if {both the dictionary table and the table we are importing from are
 opened successfully} then begin
 with DictTable do begin
 for thisfield := 1 to FromTable.fieldCount -1 do begin
 append;
 findfield(’Table_name’).text := FromTablename;
 findField(’Field_name’).text :=
 FromTable.fields[thisfield].fieldname;
 findField(’Field_type’).text :=
 FieldTypeStr[FromTable.fields[thisfield].datatype];
 FromField := FromTable.fields[thisfield];
 tStringField(findField(’Scr_prompt’)).value :=
 FromField.DisplayName;
 tbooleanField(FindField(’Required’)).value := Fromfield.Required;
 { the rest of the fields}
 post;
 end;
 end;
 result := true;
 end else begin
 result := false;
 exit;
 end;
 except
 { some error occurred while trying to import the field information}
 on EdataBaseError do begin
 screen.cursor := crDefault;
 MessageDlg(’DB error while reading field info...’,
 mtInformation, [mbOK], 0);
 result := false;
 end;
 end;
end;

➤ Listing 2

to set the appropriate properties at
run time, as shown in Listing 3.

The choice of when and where to
open the data dictionary depends
on your specific application. In this

case, doing all the work in the
Activate phase makes sense if you
need to re-open the table which the
dictionary applies to each time the
form is activated. And, of course, a
real application would have
try..except and try..finally
blocks in addition to the basic
error handling shown here.

In addition, the code illustrated
includes a couple of typecasts that
are not good programming
practice. In the code on the disk, in
DBUTILS.PAS, you’ll find an initial
draft of a procedure called
SetUpTable that uses a number of
case statements to sort out the
typecasting in a safe manner.

However, even if we keep our-
selves straight on typecasting,
there is the rather sticky mess rep-
resented by the data type mapping
tables shown on pages 90 and 91 of
the Delphi 1 Database Application
Developer’s Guide which is
expanded to six pages (99 to 104)
in the Delphi 1 BDE User’s Guide
where it is called Data type transla-
tions and IDAPI logical types and
driver-specific physical types.
Where this mess reaches out and
grabs you is when you build an
empty table based on the defini-
tions you’ve got in your dictionary.
Suppose we have a field called
NumHits that we want to be a large
number, so we assigned it a length
of 11 when we initially built the
dBase table using the Database
Desktop. When we pull the
structure into our data dictionary
and started editing, we notice that
the BDE has turned this into
TFloatType. But we know that
NumHits will always be a whole
number, so we change the type by
clicking on Word in the data types
list.

When we try to build an empty
table, however, we get the BDE
error “Capability not supported”.
Unfortunately, we don’t get this
when the program executes in the
place where the FieldDef states
that NumHits will be ftWord. Instead,
the error occurs when BDE at-
tempts to execute TTable.Create.
Looking through these tables, I
failed to find Word anywhere.
There’s Short, Long, Integer,
Float and Number among other

46 The Delphi Magazine Issue 8

variations of expressing a number.
Apparently, TWordField is strictly to
be used on the application side of
the BDE connection, in other
words, only to be used when you
create TFields at design time. You
get the same effect by using
ftFloatType and setting min and
max values to 0 and 65,535, a
method that would be clearer to
the client than trying to explain
that Word usually refers to the val-
ues expressed by two bytes when
the significant bit is not used as a
sign bit!

I tend to think the best place to
take care of ensuring data types are
correct for table types is right in
the dictionary editing module. The
example of building an empty table
in the code on the disk (in the file
DBUTILS.PAS) does not sort this

procedure TInputDBForm.FormActivate(Sender: TObject);
begin
 FdataDictName := AddBackSlash(extractfilePath(application.exename))+
 ’datadict.dbf’;
 DictCtrl.OpenDictionary(FdataDictName, MyDataBase, DictTable, MyQuery,
 MyDataSource);
 if openDB(MyDataBase, myTable, myQuery, myDataSource,
 ExtractFilePath(application.exename), ’contact.dbf’) then begin
 MyDataSource.enabled := true;
 MyTable.open;
 DictCtrl.SetCurrentFieldTo(’Contact.dbf’,’FirstName’);
 EditFirstName.hint := DictCtrl.hint;
 ShowHint := true;
 DictCtrl.SetCurrentFieldTo(’Contact.dbf’,’LastName’);
 MyTable.findfield(’LASTNAME’).required := DictCtrl.required;
 DictCtrl.setCurrentFieldTo(’contact.dbf’,’NumMailTo’);
 TSmallIntField(MyTable.findfield(’NumMailTo’)).minvalue :=
 DictCtrl.minValue;
 TSmallIntField(MyTable.findfield(’NumMailTo’)).maxvalue :=
 DictCtrl.maxValue;
 MyTable.edit;
 end else begin
 messagedlg(’Problem opening database’, mtinformation, [mbOK],0);
 end;
end;

➤ Listing 3

➤ Figure 3: Defining data elements➤ Figure 2: Setting display, hint and help options

out, though it does illustrate how
to get the informative “Capability
not supported” message. Also not
implemented in the code on disk is
a method for generating a Delphi
unit to build the table, since that
was included on a disk with this
magazine a few issues back [Issue
5: MAKEDBF, courtesy of Charlotte
Gamsu. Editor].

Nightmare On Alias Street...
Finally, before I close, I’d like to
explain how I avoided dealing with
the infamous BDE alias. Perhaps
you have no problem with the way
Borland set up the alias business
and made TDatabase something
we’re not supposed to have to use.
This is all fine and dandy if you are
building for yourself on your own
machine or you don’t mind writing

special code to do the BDE configu-
ration at installation, or perhaps
giving the user special instructions
on how to do that. However, in this
data dictionary application, I
needed to be able to hop around
and grab dictionary data by
opening a table in any directory as
well as creating dictionaries in any
directory and, further, creating
tables based on the dictionary in
any directory. Being one who digs
around, when I found TDatabase I
figured I’d found the cure. And it is
the cure – just give the database
instance a name and ignore the
alias field.

The problem with using the alias
field of TDatabase is that when you
give the database instance an alias
name you run the risk of generating
spurious errors such as “Duplicate
Alias”. Fine, I knew it was a dupli-
cate. I had just closed the database
over in directory X and now I want
to open one here in directory Y!
“No, no”, says the BDE, “Not
allowed”. You can’t have one alias
pointing to two different directo-
ries in the same program, even if
you close everything down using
the TSession routines. Once the
BDE link is started during a run, or
set up via the BDE configuration
tool, an alias is locked to whatever
it is first set to. OK, so lets try
changing the alias name. I don’t re-
call what happened then, but that
didn’t work either. In the end I used
the Object Inspector at design time
to give one database the name XXX
and the other the name YYY and left
the alias name blank. The function
in Listing 4 illustrates a generic way

April 1996 The Delphi Magazine 47

of opening a database without
involving alias considerations.
Note that you do have to have each
of these components dropped
somewhere in your application and
that the alias property of TDatabase
must be blank and the database
name property of TDatabase must
be non-blank. Also, tables created
this way will not be listed when you
go into the Database Desktop:
you’ll have to navigate to the
directory yourself.

Wrapping Up
In conclusion, I’d like to point out
that you could use this approach to
set up separate data dictionaries
so that, for example, the German
edition not only has German
prompts, but also generates a table
with German table and field names.
I also included a memo field for
inserting help text with the idea
that help files could also be gener-
ated on the fly. By centralizing all
the data management information
in a data dictionary, future code
maintenance is made much easier.

Delphi provides the tools to
create a very useful and powerful
linkage between a formal data
dictionary database and the tables

needed by the application it
applies to. While resource files
could probably be used to accom-
plish nearly the same thing, having
the data dictionary be a database
itself means that it will be easy to
produce readable reports and it
will be easy to update both the data
dictionary and the supported

application. The code presented
here is a long way from production,
but I hope it will help others who
may be looking for these solutions.

Brandon Smith lives and works in
Mansfield, MO, USA and can be
emailed at Synature@aol.com

function openDB(var whichdb : tdatabase; var whichtable : ttable;
 var whichQuery : tquery; var whichsource : tDataSource;
 const pathname, tablename : string): boolean;
begin
 try
 WhichDB.close;
 WhichDB.Params.clear;
 WhichDB.Params.Add(’PATH=’+PathName);
 WhichDB.open;
 WhichTable.DatabaseName:= WhichDB.databasename;
 WhichTable.tablename := TableName;
 WhichTable.Active:= True;
 WhichSource.DataSet:= WhichTable;
 WhichQuery.databaseName := WhichDB.databasename;
 WhichQuery.dataSource := WhichSource;
 WhichQuery.close;
 WhichQuery.sql.clear;
 WhichQuery.params.clear;
 result := true;
 except
 on EdataBaseError do begin
 screen.cursor := crDefault;
 MessageDlg(’Could not open ’+
 pathname + ’ ’+tablename, mtInformation, [mbOK], 0);
 result := false;
 end;
 end;
end;

➤ Listing 4

	Records and Fields
	Finding Field Definition
	Data Dictionaries
	The DDICT Project
	Nightmare on Alias Street....
	Wrapping up

